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Abstract

In 1973, R. Penrose presented an argument that the total mass of a
space-time which contains black holes with event horizons of total area A
should be at least

√

A/16π. An important special case of this physical state-
ment translates into a very beautiful mathematical inequality in Riemannian
geometry known as the Riemannian Penrose inequality. This inequality was
first established by G. Huisken and T. Ilmanen in 1997 for a single black
hole and then by one of the authors (HB) in 1999 for any number of black
holes. The two approaches use two different geometric flow techniques and
are described here. We further present some background material concerning
the problem at hand, discuss some applications of Penrose-type inequalities,
as well as the open questions remaining.
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1 Introduction

1.1 What is the Penrose Conjecture?

We will restrict our attention to statements about space-like slices (M 3, g, h) of a
space-time, where g is the positive definite induced metric on M 3 and h is the second
fundamental form of M3 in the space-time. From the Einstein equation G = 8πT ,
where G is the Einstein curvature tensor and T is the stress-energy tensor, it follows
from the Gauss and Codazzi equations that

µ =
1

8π
G00 =

1

16π
[R −

∑

i,j

hijhij + (
∑

i

hi
i)2], (1.1)

J i =
1

8π
G0i =

1

8π

∑

j

∇j [hij − (
∑

k

hk
k)gij ], (1.2)

where µ and J are respectively the energy density and the current vector density at
each point of M3. Then the physical assumption of nonnegative energy density ev-
erywhere in the space-time as measured by observers moving in all future-pointing,
time-like directions (known as the dominant energy condition) implies that

µ ≥ |J | (1.3)

everywhere on M3. Hence, we will only consider Cauchy data (M 3, g, h) which
satisfy inequality (1.3).

The final assumption we will make is that (M 3, g, h) is asymptotically flat, which
will be discussed in more detail below. Typically, one assumes that M 3 consists of
a compact set together with one or more asymptotically flat “ends”, each diffeo-
morphic to the complement of a ball in R

3. For example, R
3 has one end, whereas

R
3#R

3 has two ends.
Penrose’s motivation for the Penrose Conjecture [70] goes as follows: Suppose we

begin with Cauchy data (M3, g, h) which is asymptotically flat (so that total mass
of a chosen end is defined) and satisfies µ ≥ |J | everywhere. Using this as initial
data, solve the Einstein equation forward in time, and suppose that the resulting
space-time is asymptotically flat in null directions so that the Trautman-Bondi mass
is defined for all retarded times. Suppose further that the space-time eventually
settles down to a Kerr solution, so that the Trautman-Bondi mass asymptotes to
the ADM mass of the relevant Kerr solution. By the Hawking Area Theorem [48]
(compare [29]), the total area of the event horizons of any black holes does not
decrease, while the total Trautman-Bondi mass of the system — which is expected
to approach the ADM mass at very early advanced times — does not increase. Since
Kerr solutions all have

m ≥
√

Ae/16π, (1.4)

where m is total ADM mass [5, 38] and Ae is the total area of the event horizons,
we must have this same inequality for the original Cauchy data (M 3, g, h).

The reader will have noticed that the above argument makes a lot of global
assumptions about the resulting space-times, and our current understanding of the
associated mathematical problems is much too poor to be able to settle those one
way or another. The conjecture that (all, or at least a few key ones of) the above
global properties are satisfied is known under the name of Penrose’s cosmic censor-
ship hypothesis. We refer the reader to the article by Lars Andersson in this volume
and references therein for more information about that problem.

A natural interpretation of the Penrose inequality is that the mass contributed
by a collection of black holes is not less than

√

A/16π. More generally, the question
“How much matter is in a given region of a space-time?” is still very much an open
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problem [23]. In this paper, we will discuss some of the qualitative aspects of mass in
general relativity, look at examples which are informative, and describe the two very
geometric proofs of the Riemannian Penrose inequality. The most general version of
the Penrose inequality is still open and is discussed in section 4.2. The notes here are
partly based on one of the author’s (HB) lectures at the “Fifty Years of the Cauchy
Problem in General Relativity” Summer School held in August 2002 in Cargèse
(videos of lectures available at URL http://fanfreluche.math.univ-tours.fr,
or on the DVD enclosed with this volume), and some sections draw substantially
on his review paper [17], following a suggestion of the editors of this volume. The
mathematically oriented reader with limited knowledge of the associated physics
might find it useful to become acquainted with [17] before reading the current
presentation.

1.2 Total Mass in General Relativity

Amongst the notions of mass which are well understood in general relativity are
local energy density at a point, the total mass of an asymptotically flat space-time
(whether at spacelike or at null infinity; the former is usually called the ADM mass
while the latter the Trautman-Bondi mass), and the total mass of an asymptotically
anti-de Sitter space-time (often called the Abbott-Deser mass). On the other hand,
defining the mass of a region larger than a point but smaller than the entire universe
is not very well understood at all. While we will return to this last question in
Section 4.3 below, we start here with a discussion of the ADM mass.

Suppose (M3, g) is a Riemannian 3-manifold isometrically embedded in a (3+1)
dimensional Lorentzian space-time N 4. Suppose that M3 has zero second funda-
mental form in the space-time. (Recall that the second fundamental form is a
measure of how much M3 curves inside N4. M3 is also sometimes called “totally
geodesic” since geodesics of N 4 which are tangent to M3 at a point stay inside
M3 forever.) The Penrose inequality (which in its full generality allows for M 3 to
have non-vanishing second fundamental form) is known as the Riemannian Penrose
inequality when the second fundamental form is set to zero.1

In this work we will mainly consider (M 3, g) that are asymptotically flat at infin-
ity, which means that for some compact set K, the “end” M 3\K is diffeomorphic
to R

3\B1(0), where the metric g is asymptotically approaching (with the decay
conditions (1.7) below) the standard flat metric δij on R

3 at infinity. The simplest
example of an asymptotically flat manifold is (R3, δij) itself. Other good examples
are the conformal metrics (R3, u(x)4δij), where u(x) approaches a constant suffi-
ciently rapidly at infinity. (Also, sometimes it is convenient to allow (M 3, g) to
have multiple asymptotically flat ends, in which case each connected component
of M3\K must have the property described above.) A qualitative picture of an
asymptotically flat 3-manifold is shown below.

1This terminology is somewhat misleading, in the following sense: the results discussed below
hold as soon as the scalar curvature is non-negative. This will certainly be the case if hij = 0 and
µ ≥ 0 in (1.1), but e.g.

∑

i hi
i = 0, or various other conditions in this spirit, suffice.
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The assumptions on the asymptotic behavior of (M 3, g) at infinity will be tai-
lored to imply the existence of the limit

m =
1

16π
lim

σ→∞

∫

Sσ

∑

i,j

(gij,iνj − gii,jνj) dµ (1.5)

where Sσ is the coordinate sphere of radius σ, ν is the unit normal to Sσ , and dµ
is the area element of Sσ in the coordinate chart. The quantity m is called the
total mass (or ADM mass [5]) of (M 3, g). Equation (1.5) begs the question of the
geometric character of the number m: the integrand contains partial derivatives of
a tensor, which makes it coordinate dependent. For example, if g = δ is the flat
metric in the standard orthogonal coordinates xi, one clearly obtains zero. On the
other hand, we can introduce a new coordinate system (ρ, θ, φ) by changing the
radial variable r to

r = ρ + cρ1−α , (1.6)

with some constants α > 0, c ∈ R. In the associated asymptotically Euclidean
coordinate system yi = ρxi/r the metric tensor approaches δ as O(|y|−α):

δijdxidxj = gijdyidyj ,

with
gij − δij = O(|y|−α) , ∂kgij = O(|y|−α−1) . (1.7)

A short calculation gives

m =







∞ , α < 1/2 ,
c2/8 , α = 1/2 ,
0 , α > 1/2 .

Thus, the mass m of the flat metric in the coordinate system yi is infinite if α < 1/2,
can have an arbitrary positive value depending upon c if α = 1/2, and vanishes
for α > 1/2. (Negative values of m can also be obtained by deforming the slice
{t = 0} within Minkowski space-time [25] when the decay rate α = 1/2 is allowed.)
The lesson of this is that the mass appears to depend upon the coordinate system
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chosen, even within the class of coordinate systems in which the metric tends to a
constant coefficients matrix as r tends to infinity. It can be shown that the decay
rate α = 1/2 is precisely the borderline for a well defined mass: the mass is an
invariant in the class of coordinate systems satisfying (1.7) with α > 1/2 and with
R ∈ L1(M) [6, 26]2. We note that the above example is essentially due to Denisov
and Solov’ev [37], and that the geometric character of m in a space-time setting is
established in [27].

Going back to the example (R3, u(x)4δij), if we suppose that u(x) > 0 has the
asymptotics at infinity

u(x) = a + b/|x| + O(1/|x|2) , (1.8)

with the derivatives of the O(1/|x|2) term being O(1/|x|3), then the total mass of
(M3, g) is

m = 2ab. (1.9)

Furthermore, suppose (M3, g) is any metric whose “end” is isometric to
(R3\K, u(x)4δij), where u(x) is harmonic in the coordinate chart of the end
(R3\K, δij) and goes to a constant at infinity. Then expanding u(x) in terms of
spherical harmonics demonstrates that u(x) satisfies condition (1.8). We will call
these Riemannian manifolds (M3, g) harmonically flat at infinity, and we note that
the total mass of these manifolds is also given by equation (1.9).

A very nice lemma by Schoen and Yau [73] is that, given any ε > 0, it is always
possible to perturb an asymptotically flat manifold to become harmonically flat at
infinity such that the total mass changes less than ε and the metric changes less
than ε pointwise, all while maintaining nonnegative scalar curvature (discussed in
a moment). Hence, it happens that to prove the theorems in this paper, we only
need to consider harmonically flat manifolds. Thus, we can use equation (1.9) as our
definition of total mass. As an example (already pointed out), note that (R3, δij) has
zero total mass. Also, note that, qualitatively, the total mass of an asymptotically
flat or harmonically flat manifold is the 1/r rate at which the metric becomes flat
at infinity.

A deep (and considerably more difficult to prove) result of Corvino [34] (com-
pare [28,35]) shows that if m is non zero, then one can always perturb an asymptot-
ically flat manifold as above while maintaining zero scalar curvature and achieving
(1.8) without any error term.

We finish this section by noting the following “isotropic coordinates” represen-
tation of the exterior Schwarzschild space-time metric

(

R ×
(

R
3 \ Bm/2(0)

)

, (1 +
m

2|x| )
4(dx2

1 + dx2
2 + dx2

3) −
(

1 − m/2|x|
1 + m/2|x|

)2

dt2

)

.

(1.10)
The t = 0 slice (which has zero second fundamental form) is the exterior spacelike
Schwarzschild metric

(

R
3\Bm/2(0), (1 +

m

2|x| )
4δij

)

. (1.11)

According to equation (1.9), the parameter m is of course the total mass of this
3-manifold.

The above example also allows us to make a connection between what we have
arbitrarily defined to be total mass and our more intuitive Newtonian notions of

2Actually the results in [6] use weighted Sobolev conditions on two derivatives of the metric,
suggesting that the right decay conditions in (1.7) are o(|y|−1/2) for the metric and o(|y|−3/2) for
its derivatives. It can be checked that the argument in [26] generalises, and gives the result under
those conditions.
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mass. Using the natural Lorentzian coordinate chart as a reference, one can compute
that geodesics in the Schwarzschild space-time metric are curved when m 6= 0.
Furthermore, if one interprets this curvature as acceleration due to a force coming
from the central region of the manifold, one finds that this fictitious force yields
an acceleration asymptotic to m/r2 for large r. Hence, a test particle left to drift
along geodesics far out in the asymptotically flat end of the Schwarzschild spacetime
“accelerates” according to Newtonian physics as if the total mass of the system were
m.

1.3 Example Using Superharmonic Functions in R
3

Once again, let us return to the (R3, u(x)4δij) example. The formula for the scalar
curvature is

R(x) = −8u(x)−5∆u(x).

Hence, since the physical assumption of nonnegative energy density implies non-
negative scalar curvature, we see that u(x) > 0 must be superharmonic (∆u ≤ 0).
For simplicity, let us also assume that u(x) is harmonic outside a bounded set so
that we can expand u(x) at infinity using spherical harmonics. Hence, u(x) has
the asymptotics of equation (1.8). By the maximum principle, it follows that the
minimum value for u(x) must be a, referring to equation (1.8). Hence, b ≥ 0, which
implies that m ≥ 0. Thus we see that the assumption of nonnegative energy density
at each point of (R3, u(x)4δij) implies that the total mass is also nonnegative, which
is what one would hope.

1.4 The Positive Mass Theorem

Suppose we have any asymptotically flat manifold with nonnegative scalar curva-
ture, is it true that the total mass is also nonnegative? The answer is yes, and this
fact is known as the positive mass theorem, first proved by Schoen and Yau [72]
in 1979 using minimal surface techniques and then by Witten [80] in 1981 us-
ing spinors. (The mathematical details needed for Witten’s argument have been
worked out in [6,21,51,69].) In the zero second fundamental form case, also known
as the time-symmetric case, the positive mass theorem is known as the Riemannian
positive mass theorem and is stated below.

Theorem 1.1 (Schoen, Yau [72]) Let (M 3, g) be any asymptotically flat, complete
Riemannian manifold with nonnegative scalar curvature. Then the total mass m ≥
0, with equality if and only if (M 3, g) is isometric to (R3, δ).

1.5 Apparent horizons

Given a surface in a space-time, suppose that it emits an outward shell of light. If
the surface area of this shell of light is decreasing everywhere on the surface, then
this is called a trapped surface.3 The outermost boundary of these trapped surfaces
is called the apparent horizon. Apparent horizons can be computed in terms of
Cauchy data, and under appropriate global hypotheses an apparent horizon implies
the existence of an event horizon outside of it [48, 78] in the time-symmetric case.
The reader is referred to [24] for a review of what is known about apparent horizons;
further recent results include [36, 67].

3The reader is warned that several authors require the trapping of both outwards and inwards
shells of light in the definition of trapped surface. The inwards null directions are irrelevant for
our purposes, and they are therefore ignored in the definition here.
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Now let us return to the case where (M 3, g) is a “t = 0” slice of a space-time with
zero second fundamental form. Then apparent horizons of black holes intersected
with M3 correspond to the connected components of the outermost minimal surface
Σ0 of (M3, g).

All of the surfaces we are considering in this paper will be required to be smooth
boundaries of open bounded regions, so that outermost is well-defined with respect
to a chosen end of the manifold [15]. A minimal surface in (M 3, g) is a surface which
is a critical point of the area function with respect to any smooth variation of the
surface. The first variational calculation implies that minimal surfaces have zero
mean curvature. The surface Σ0 of (M3, g) is defined as the boundary of the union
of the open regions bounded by all of the minimal surfaces in (M 3, g). It turns
out that Σ0 also has to be a minimal surface, so we call Σ0 the outermost minimal
surface. A qualitative sketch of an outermost minimal surface of a 3-manifold is
shown below.

We will also define a surface to be (strictly) outer minimising if every surface
which encloses it has (strictly) greater area. Note that outermost minimal surfaces
are strictly outer minimising. Also, we define a horizon in our context to be any
minimal surface which is the boundary of a bounded open region.

It also follows from a stability argument (using the Gauss-Bonnet theorem in-
terestingly) that each component of an outermost minimal surface (in a 3-manifold
with nonnegative scalar curvature) must have the topology of a sphere [68].

Penrose’s argument [70], presented in Section 1.1, suggests that the mass con-
tributed by the black holes (thought of as the connected components of Σ0) should
be at least

√

A0/16π, where A0 is the area of Σ0. This leads to the following
geometric statement:

The Riemannian Penrose Inequality Let (M 3, g) be a complete, smooth, 3-
manifold with nonnegative scalar curvature which is harmonically flat at infinity
with total mass m and which has an outermost minimal surface Σ0 of area A0.
Then

m ≥
√

A0

16π
, (1.12)
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with equality if and only if (M 3, g) is isometric to the Schwarzschild metric
(R3\{0}, (1 + m

2|x|)
4δij) outside their respective outermost minimal surfaces.

The above statement has been proved by one of us (HB) [15], and Huisken and
Ilmanen [57] proved it when A0 is defined instead to be the area of the largest
connected component of Σ0. In this paper we will discuss both approaches, which
are very different, although they both involve flowing surfaces and/or metrics.

We also clarify that the above statement is with respect to a chosen end of
(M3, g), since both the total mass and the definition of outermost refer to a partic-
ular end. In fact, nothing very important is gained by considering manifolds with
more than one end, since extra ends can always be compactified as follows: Given
an extra asymptotically flat end, we can use a lemma of Schoen and Yau [73] to
make the end harmonically flat outside a bounded region. By an extension of this
result in the thesis of one of the authors (HB) [14], or using the Corvino-Schoen
construction [34], we can make the end exactly Schwarzschild outside a bounded
set while still keeping nonnegative scalar curvature. We then replace the interior
Schwarzschild region by an object often referred to as “a bag of gold”, one way of
doing it proceeds as follows: Since we are now in the class of spherically symmetric
manifolds, we can then “round the metric up” to be an extremely large spherical
cylinder outside a bounded set. This can be done while keeping nonnegative scalar
curvature since the Hawking mass increases during this procedure and since the
rate of change of the Hawking mass has the same sign as the scalar curvature in
the spherically symmetric case (as long as the areas of the spheres are increasing).
Finally, the large cylinder can be capped off with a very large sphere to compactify
the end.

Hence, we will typically consider manifolds with just one end. In the case that
the manifold has multiple ends, we will require every surface (which could have
multiple connected components) in this paper to enclose all of the ends of the
manifold except the chosen end.

1.6 The Schwarzschild Metric

The (spacelike) Schwarzschild metric (R3\{0}, (1 + m
2|x|)

4δij) (compare (1.11)), re-

ferred to in the above statement of the Riemannian Penrose Inequality, is a particu-
larly important example to consider, and corresponds to a zero-second fundamental
form, space-like slice of the usual (3+1)-dimensional Schwarzschild metric.

The 3-dimensional Schwarzschild metrics with total mass m > 0 are charac-
terised by being the only spherically symmetric, geodesically complete, zero scalar
curvature 3-metrics, other than (R3, δij). Note that this flat metric on R

3 may be
interpreted as the m = 0 case of the Schwarzschild metric. Negative values of m also
give Schwarzschild metrics, but these metrics are not geodesically complete since
they have a curvature singularity at the coordinate sphere r = −m/2. If this singu-
larity is smoothed out in a spherically symmetric way, the resulting metric has very
concentrated negative energy density (and scalar curvature) in the smoothed out
region, which violates the assumption of positive energy density used throughout
this paper.

The 3-dimensional Schwarzschild metrics with total mass m > 0 can also be
embedded in 4-dimensional Euclidean space (x, y, z, w) as the set of points satis-

fying |(x, y, z)| = w2

8m + 2m, which is a parabola rotated around an S2. This last
picture allows us to see that the Schwarzschild metric, which has two ends, has a Z2

symmetry which fixes the sphere with w = 0 and |(x, y, z)| = 2m, which is clearly
minimal. Furthermore, the area of this sphere is 4π(2m)2, giving equality in the
Riemannian Penrose Inequality.
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1.7 A Brief History of the Problem

The Riemannian Penrose Inequality has a rich history spanning nearly three decades
and has motivated much interesting mathematics and physics. In 1973, R. Penrose
in effect conjectured an even more general version of inequality (1.12) using a very
clever physical argument [70], described in Section 1.1. His observation was that a
counterexample to inequality (1.12) would yield Cauchy data for solving the Einstein
equations, the solution to which would likely violate the Cosmic Censor Conjecture
(which says that singularities generically do not form in a space-time unless they
are inside a black hole).

In 1977, Jang and Wald [58], extending ideas of Geroch [43], gave a heuristic
proof of inequality (1.12) by defining a flow of 2-surfaces in (M 3, g) in which the
surfaces flow in the outward normal direction at a rate equal to the inverse of their
mean curvatures at each point. The Hawking mass of a surface (which is supposed
to estimate the total amount of energy inside the surface) is defined to be

mHawking(Σ) =

√

|Σ|
16π

(

1 − 1

16π

∫

Σ

H2

)

,

(where |Σ| is the area of Σ and H is the mean curvature of Σ in (M 3, g)) and, amaz-
ingly, is nondecreasing under this “inverse mean curvature flow.” This is seen by
the fact that under inverse mean curvature flow, it follows from the Gauss equation
and the second variation formula that

d

dt
mHawking(Σ) =

√

|Σ|
16π

[

1

2
+

1

16π

∫

Σ

2
|∇ΣH |2

H2
+ R − 2K +

1

2
(λ1 − λ2)2

]

(1.13)

when the flow is smooth, where R is the scalar curvature of (M 3, g), K is the
Gauss curvature of the surface Σ, and λ1 and λ2 are the eigenvalues of the second
fundamental form of Σ, or principal curvatures. Hence,

R ≥ 0,

and
∫

Σ

K ≤ 4π (1.14)

(which is true for any connected surface by the Gauss-Bonnet Theorem) imply

d

dt
mHawking(Σ) ≥ 0. (1.15)

Furthermore,

mHawking(Σ0) =

√

|Σ0|
16π

since Σ0 is a minimal surface and has zero mean curvature. In addition, the Hawking
mass of sufficiently round spheres at infinity in the asymptotically flat end of (M 3, g)
approaches the total mass m. Hence, if inverse mean curvature flow beginning with
Σ0 eventually flows to sufficiently round spheres at infinity, inequality (1.12) follows
from inequality (1.15).

As noted by Jang and Wald, this argument only works when inverse mean
curvature flow exists and is smooth, which is generally not expected to be the case.
In fact, it is not hard to construct manifolds which do not admit a smooth inverse
mean curvature flow. One of the main problems is that if the mean curvature of the
evolving surface becomes zero or is negative, it is not clear how to define the flow.
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For twenty years, this heuristic argument lay dormant until the work of Huisken
and Ilmanen [57] in 1997. With a very clever new approach, Huisken and Ilmanen
discovered how to reformulate inverse mean curvature flow using an energy min-
imisation principle in such a way that the new generalised inverse mean curvature
flow always exists. The added twist is that the surface sometimes jumps outward.
However, when the flow is smooth, it equals the original inverse mean curvature
flow, and the Hawking mass is still monotone. Hence, as will be described in the
next section, their new flow produced the first complete proof of inequality (1.12)
for a single black hole.

Coincidentally, one of the authors (HB) found another proof of inequality (1.12),
submitted in 1999, which provides the correct inequality for any number of black
holes. (When the outermost horizon is not-connected, the Huisken-Ilmanen proof
bounds the mass in terms of the area of its largest component, while the new
argument gives the full inequality, with the sum of areas of all components.) The
approach involves flowing the original metric to a Schwarzschild metric (outside the
horizon) in such a way that the area of the outermost minimal surface does not
change and the total mass is nonincreasing. Then since the Schwarzschild metric
gives equality in inequality (1.12), the inequality follows for the original metric.

Fortunately, the flow of metrics which is defined is relatively simple, and in fact
stays inside the conformal class of the original metric. The outermost minimal
surface flows outward in this conformal flow of metrics, and encloses any compact
set (and hence all of the topology of the original metric) in a finite amount of time.
Furthermore, this conformal flow of metrics preserves nonnegative scalar curvature.
We will describe this approach later in the paper.

Other contributions to the Penrose Conjecture have been made by O’Murchadha
and Malec in spherical symmetry [65], by Herzlich [50,52] using the Dirac operator
with spectral boundary conditions (compare [9, 66]), by Gibbons in the special
case of collapsing shells [44], by Tod [75] as it relates to the hoop conjecture, by
Bartnik [7] for quasi-spherical metrics, by Jezierski [59,60] using adapted foliations,
and by one of the authors (HB) using isoperimetric surfaces [14]. A proof of the
Penrose inequality for conformally flat manifolds (but with suboptimal constant)
has been given in [18]. We also mention work of Ludvigsen and Vickers [63] using
spinors and Bergqvist [11], both concerning the Penrose inequality for null slices of
a space-time.

Various space-time flows which could be used to prove the full Penrose inequal-
ity (see Section 4.2 below) have been proposed by Hayward [49], by Mars, Malec
and Simon [64], and by Frauendiener [39]. It was independently observed by sev-
eral researchers (HB, Hayward, Mars, Simon) that those are special cases of the

same flow, namely flowing in the direction ~I + c(t)~I ′, where ~I is the inverse mean

curvature vector − ~H/ < ~H, ~H > (which is required to be spacelike outward point-

ing), ~I ′ is the future pointing vector with the same length as ~I and orthogonal to
~I in the normal bundle to the surface, and ~H is the mean curvature vector of the
surface in the spacetime. The function c(t) is required to satisfy −1 ≤ c(t) ≤ 1 but
is otherwise free, with its endpoint values corresponding to Hayward’s null flows,
c(t) = 0 corresponding to Frauendiener’s flow, and −1 ≤ c(t) ≤ 1 yielding hypersur-
faces satisfying the Mars, Malec, Simon condition which implies the monotonicity
of the spacetime Hawking mass functional. The catch, however, is that this flow is
not parabolic and therefore only exists for a positive amount of time under special
circumstances. However, as observed by HB at the Penrose Ineqalities Workshop
in Vienna, July 2003, there does exist a way of defining what a weak solution to
the above flow is using a max-min method analogous to the notion of weak solution
to inverse mean curvature flow (which minimizes an energy functional) defined by
Huisken and Ilmanen [57]. Finding ways of constructing solutions which exist for an
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infinite amount of time (analogous to the time-symmetric inverse mean curvature
flow due to Huisken and Ilmanen) is a very interesting problem to consider.

2 Inverse Mean Curvature Flow

Geometrically, Huisken and Ilmanen’s idea can be described as follows. Let Σ(t)
be the surface resulting from inverse mean curvature flow for time t beginning with
the minimal surface Σ0. Define Σ̄(t) to be the outermost minimal area enclosure of
Σ(t). Typically, Σ(t) = Σ̄(t) in the flow, but in the case that the two surfaces are
not equal, immediately replace Σ(t) with Σ̄(t) and then continue flowing by inverse
mean curvature.

An immediate consequence of this modified flow is that the mean curvature of
Σ̄(t) is always nonnegative by the first variation formula, since otherwise Σ̄(t) would
be enclosed by a surface with less area. This is because if we flow a surface Σ in
the outward direction with speed η, the first variation of the area is

∫

Σ Hη, where
H is the mean curvature of Σ.

Furthermore, by stability, it follows that in the regions where Σ̄(t) has zero mean
curvature, it is always possible to flow the surface out slightly to have positive mean
curvature, allowing inverse mean curvature flow to be defined, at least heuristically
at this point.

It turns out that the Hawking mass is still monotone under this new modified
flow. Notice that when Σ(t) jumps outward to Σ̄(t),

∫

Σ̄(t)

H2 ≤
∫

Σ(t)

H2

since Σ̄(t) has zero mean curvature where the two surfaces do not touch. Further-
more,

|Σ̄(t)| = |Σ(t)|

since (this is a neat argument) |Σ̄(t)| ≤ |Σ(t)| (since Σ̄(t) is a minimal area enclosure
of Σ(t)) and we can not have |Σ̄(t)| < |Σ(t)| since Σ(t) would have jumped outward
at some earlier time. This is only a heuristic argument, but we can then see that
the Hawking mass is nondecreasing during a jump by the above two equations.

This new flow can be rigorously defined, always exists, and the Hawking mass
is monotone, if the scalar curvature is positive. In [57], Huisken and Ilmanen define
Σ(t) to be the level sets of a scalar valued function u(x) defined on (M 3, g) such
that u(x) = 0 on the original surface Σ0 and satisfies

div

( ∇u

|∇u|

)

= |∇u| (2.1)

in an appropriate weak sense. Since the left hand side of the above equation is the
mean curvature of the level sets of u(x) and the right hand side is the reciprocal of
the flow rate, the above equation implies inverse mean curvature flow for the level
sets of u(x) when |∇u(x)| 6= 0.

Huisken and Ilmanen use an energy minimisation principle to define weak solu-
tions to equation (2.1). Equation (2.1) is said to be weakly satisfied in Ω by the
locally Lipschitz function u if for all locally Lipschitz v with {v 6= u} ⊂⊂ Ω,

Ju(u) ≤ Ju(v)

where

Ju(v) :=

∫

Ω

|∇v| + v|∇u|.
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It can then be seen that the Euler-Lagrange equation of the above energy functional
yields equation (2.1).

In order to prove that a solution u exists to the above two equations, Huisken
and Ilmanen regularise the degenerate elliptic equation (2.1) to the elliptic equation

div

(

∇u
√

|∇u|2 + ε2

)

=
√

|∇u|2 + ε2.

Solutions to the above equation are then shown to exist using the existence of a
subsolution, and then taking the limit as ε goes to zero yields a weak solution to
equation (2.1). There are many details which we are skipping here, but these are
the main ideas.

As it turns out, weak solutions u(x) to equation (2.1) often have flat regions
where u(x) equals a constant. Hence, the levels sets Σ(t) of u(x) will be discontinu-
ous in t in this case, which corresponds to the “jumping out” phenomenon referred
to at the beginning of this section.

We also note that since the Hawking mass of the levels sets of u(x) is monotone,
this inverse mean curvature flow technique not only proves the Riemannian Penrose
Inequality, but also gives a new proof of the Positive Mass Theorem in dimension
three. This is seen by letting the initial surface be a very small, round sphere
(which will have approximately zero Hawking mass) and then flowing by inverse
mean curvature, thereby proving m ≥ 0.

The Huisken and Ilmanen inverse mean curvature flow also seems ideally suited
for proving Penrose inequalities for 3-manifolds which have R ≥ −6 and which are
asymptotically hyperbolic; this is discussed in more detail in Section 4.1.

Because the monotonicity of the Hawking mass relies on the Gauss-Bonnet the-
orem, these arguments do not work in higher dimensions, at least so far. Also,
because of the need for equation (1.14), inverse mean curvature flow only proves
the Riemannian Penrose Inequality for a single black hole. In the next section,
we present a technique which proves the Riemannian Penrose Inequality for any
number of black holes, and which can likely be generalised to higher dimensions.

3 The Conformal Flow of Metrics

Given any initial Riemannian manifold (M 3, g0) which has nonnegative scalar cur-
vature and which is harmonically flat at infinity, we will define a continuous, one
parameter family of metrics (M 3, gt), 0 ≤ t < ∞. This family of metrics will con-
verge to a 3-dimensional Schwarzschild metric and will have other special properties
which will allow us to prove the Riemannian Penrose Inequality for the original met-
ric (M3, g0).

In particular, let Σ0 be the outermost minimal surface of (M 3, g0) with area A0.
Then we will also define a family of surfaces Σ(t) with Σ(0) = Σ0 such that Σ(t) is
minimal in (M3, gt). This is natural since as the metric gt changes, we expect that
the location of the horizon Σ(t) will also change. Then the interesting quantities to
keep track of in this flow are A(t), the total area of the horizon Σ(t) in (M 3, gt),
and m(t), the total mass of (M3, gt) in the chosen end.

In addition to all of the metrics gt having nonnegative scalar curvature, we will
also have the very nice properties that

A′(t) = 0,

m′(t) ≤ 0

for all t ≥ 0. Then since (M3, gt) converges to a Schwarzschild metric (in an
appropriate sense) which gives equality in the Riemannian Penrose Inequality as
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described in the introduction,

m(0) ≥ m(∞) =

√

A(∞)

16π
=

√

A(0)

16π
(3.1)

which proves the Riemannian Penrose Inequality for the original metric (M 3, g0).
The hard part, then, is to find a flow of metrics which preserves nonnegative scalar
curvature and the area of the horizon, decreases total mass, and converges to a
Schwarzschild metric as t goes to infinity. This proceeds as follows:

The metrics gt will all be conformal to g0. This conformal flow of metrics can be
thought of as the solution to a first order o.d.e. in t defined by equations (3.2)-(3.5).
Let

gt = ut(x)4g0 (3.2)

and u0(x) ≡ 1. Given the metric gt, define

Σ(t) = the outermost minimal area enclosure of Σ0 in (M3, gt) (3.3)

where Σ0 is the original outer minimising horizon in (M 3, g0). In the cases in which
we are interested, Σ(t) will not touch Σ0, from which it follows that Σ(t) is actually
a strictly outer minimising horizon of (M 3, gt). Then given the horizon Σ(t), define
vt(x) such that







∆g0
vt(x) ≡ 0 outside Σ(t)
vt(x) = 0 on Σ(t)

limx→∞ vt(x) = −e−t
(3.4)

and vt(x) ≡ 0 inside Σ(t). Finally, given vt(x), define

ut(x) = 1 +

∫ t

0

vs(x)ds (3.5)

so that ut(x) is continuous in t and has u0(x) ≡ 1.
Note that equation (3.5) implies that the first order rate of change of ut(x) is

given by vt(x). Hence, the first order rate of change of gt is a function of itself, g0,
and vt(x) which is a function of g0, t, and Σ(t) which is in turn a function of gt and
Σ0. Thus, the first order rate of change of gt is a function of t, gt, g0, and Σ0. (All
the results in this section are from [15].)

Theorem 3.1 Taken together, equations (3.2)-(3.5) define a first order o.d.e. in
t for ut(x) which has a solution which is Lipschitz in the t variable, C1 in the x
variable everywhere, and smooth in the x variable outside Σ(t). Furthermore, Σ(t)
is a smooth, strictly outer minimising horizon in (M 3, gt) for all t ≥ 0, and Σ(t2)
encloses but does not touch Σ(t1) for all t2 > t1 ≥ 0.

Since vt(x) is a superharmonic function in (M 3, g0) (harmonic everywhere except
on Σ(t), where it is weakly superharmonic), it follows that ut(x) is superharmonic as
well. Thus, from equation (3.5) we see that limx→∞ ut(x) = e−t and consequently
that ut(x) > 0 for all t by the maximum principle. Then since

R(gt) = ut(x)−5(−8∆g0
+ R(g0))ut(x) (3.6)

it follows that (M3, gt) is an asymptotically flat manifold with nonnegative scalar
curvature.

Even so, it still may not seem like gt is particularly naturally defined since the
rate of change of gt appears to depend on t and the original metric g0 in equation
(3.4). We would prefer a flow where the rate of change of gt can be defined purely
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as a function of gt (and Σ0 perhaps), and interestingly enough this actually does
turn out to be the case. In [15] we prove this very important fact and define a
new equivalence class of metrics called the harmonic conformal class. Then once
we decide to find a flow of metrics which stays inside the harmonic conformal class
of the original metric (outside the horizon) and keeps the area of the horizon Σ(t)
constant, then we are basically forced to choose the particular conformal flow of
metrics defined above.

Theorem 3.2 The function A(t) is constant in t and m(t) is non-increasing in t,
for all t ≥ 0.

The fact that A′(t) = 0 follows from the fact that to first order the metric is
not changing on Σ(t) (since vt(x) = 0 there) and from the fact that to first order
the area of Σ(t) does not change as it moves outward since Σ(t) is a critical point
for area in (M3, gt). Hence, the interesting part of theorem (3.2) is proving that
m′(t) ≤ 0. Curiously, this follows from a nice trick using the Riemannian positive
mass theorem.

Another important aspect of this conformal flow of the metric is that outside the
horizon Σ(t), the manifold (M3, gt) becomes more and more spherically symmetric
and “approaches” a Schwarzschild manifold (R3\{0}, s) in the limit as t goes to ∞.
More precisely,

Theorem 3.3 For sufficiently large t, there exists a diffeomorphism φt between
(M3, gt) outside the horizon Σ(t) and a fixed Schwarzschild manifold (R3\{0}, s)
outside its horizon. Furthermore, for all ε > 0, there exists a T such that for all
t > T , the metrics gt and φ∗

t (s) (when determining the lengths of unit vectors of
(M3, gt)) are within ε of each other and the total masses of the two manifolds are
within ε of each other. Hence,

lim
t→∞

m(t)
√

A(t)
=

√

1

16π
.

Theorem 3.3 is not that surprising really although a careful proof is reasonably
long. However, if one is willing to believe that the flow of metrics converges to a
spherically symmetric metric outside the horizon, then theorem 3.3 follows from
two facts. The first fact is that the scalar curvature of (M 3, gt) eventually becomes
identically zero outside the horizon Σ(t) (assuming (M 3, g0) is harmonically flat).
This follows from the facts that Σ(t) encloses any compact set in a finite amount of
time, that harmonically flat manifolds have zero scalar curvature outside a compact
set, that ut(x) is harmonic outside Σ(t), and equation (3.6). The second fact is that
the Schwarzschild metrics are the only complete, spherically symmetric 3-manifolds
with zero scalar curvature (except for the flat metric on R3).

The Riemannian Penrose inequality, inequality (1.12), then follows from equa-
tion (3.1) using theorems 3.1, 3.2 and 3.3, for harmonically flat manifolds [15]. Since
asymptotically flat manifolds can be approximated arbitrarily well by harmonically
flat manifolds while changing the relevant quantities arbitrarily little, the asymp-
totically flat case also follows. Finally, the case of equality of the Penrose inequality
follows from a more careful analysis of these same arguments.

We refer the reader to [16,17,20] for further review-type discussions of the results
described above.

4 Open Questions and Applications

Now that the Riemannian Penrose conjecture has been proved, what are the next
interesting directions? What applications can be found? Is this subject only of
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physical interest, or are there possibly broader applications to other problems in
mathematics?

Clearly the most natural open problem is to find a way to prove the general
Penrose conjecture (discussed in the next subsection) in which M 3 is allowed to
have any second fundamental form in the space-time. There is good reason to think
that this may follow from the Riemannian Penrose inequality, although this is a
bit delicate. On the other hand, the general positive mass theorem followed from
the Riemannian positive mass theorem as was originally shown by Schoen and Yau
using an idea due to Jang [71, 73]. For physicists this problem is definitely a top
priority since most space-times do not even admit zero second fundamental form
space-like slices. We note that the Riemannian Penrose inequality does give a result
which applies to situations more general than time symmetric, as the condition
R ≥ 0 holds, e.g., for maximal initial data sets trgh = 0, as well as in several other
situations (“polar gauge”, and so on). However, the general situation remains open.

Another interesting question is to ask these same questions in higher dimensions.
One of us (HB) is currently working on a paper to prove the Riemannian Penrose
inequality in dimensions less than 8. Dimension 8 and higher are harder because
of the surprising fact that minimal hypersurfaces (and hence apparent horizons of
black holes) can have codimension 7 singularities (points where the hypersurface
is not smooth). This curious technicality is also the reason that the positive mass
theorem in dimensions 8 and higher for manifolds which are not spin has only been
announced very recently by Christ and Lohkamp [22], using a formidable singularity
excision argument, and it is conceivable that this technique will allow one to extend
the Riemannian Penrose Inequality proof to all dimensions.

Naturally it is harder to tell what the applications of these techniques might
be to other problems, but already there have been some. One application is to
the famous Yamabe problem: Given a compact 3-manifold M 3, define E(g) =
∫

M3 RgdVg where g is scaled so that the total volume of (M 3, g) is one, Rg is
the scalar curvature at each point, and dVg is the volume form. An idea due
to Yamabe was to try to construct canonical metrics on M 3 by finding critical
points of this energy functional on the space of metrics. Define C(g) to be the
infimum of E(ḡ) over all metrics ḡ conformal to g. Then the (smooth) Yamabe
invariant of M3, denoted here as Y (M3), is defined to be the supremum of C(g)
over all metrics g. Y (S3) = 6 · (2π2)2/3 ≡ Y1 is known to be the largest possible
value for Yamabe invariants of 3-manifolds. It is also known that Y (T 3) = 0 and
Y (S2 × S1) = Y1 = Y (S2×̃S1), where S2×̃S1 is the non-orientable S2 bundle over
S1.

One of the authors (HB) and Andre Neves, working on a problem suggested
by Richard Schoen, were able to compute the Yamabe invariant of RP 3 using in-
verse mean curvature flow techniques [19] (see also [13, Lecture 2]) and found that
Y (RP 3) = Y1/22/3 ≡ Y2. A corollary is Y (RP 2 × S1) = Y2 as well. These tech-
niques also yield the surprisingly strong result that the only prime 3-manifolds with
Yamabe invariant larger than RP 3 are S3, S2 × S1, and S2×̃S1. The Poincaré
conjecture for 3-manifolds with Yamabe invariant greater than RP 3 is therefore a
corollary. Furthermore, the problem of classifying 3-manifolds is known to reduce
to the problem of classifying prime 3-manifolds. The Yamabe approach then would
be to make a list of prime 3-manifolds ordered by Y. The first five prime 3-manifolds
on this list are therefore S3, S2 × S1, S2×̃S1, RP 3, and RP 2 × S1.

4.1 The Riemannian Penrose conjecture on asymptotically
hyperbolic manifolds

Another natural class of metrics that are of interest in general relativity consists of
metrics which asymptote to the hyperbolic metric. Such metrics arise when con-
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sidering solutions with a negative cosmological constant, or when considering “hy-
perboloidal hypersurfaces” in space-times which are asymptotically flat in isotropic
directions (technically speaking, these are spacelike hypersurfaces which intersect
I transversally in the conformally completed space-time). For instance, recall that
in the presence of a cosmological constant Λ the scalar constraint equation reads

R = 16πµ + |h|2g − (tr gh)2 + 2Λ .

Suppose that h = λg, where λ is a constant; such an h solves the vector constraint
equation. We then have

R = 16πµ − 6λ2 + 2Λ =: 16πµ + 2Θ . (4.1)

The constant Θ equals thus Λ when λ = 0, or −3λ2 when Λ = 0. The positive
energy condition µ ≥ 0 is now equivalent to

R ≥ 2Θ .

For λ = 0 the associated model space-time metrics take the form

ds2 = −(k − 2m

r
− Λ

3
r2)dt2 + (k − 2m

r
− Λ

3
r2)−1dr2 + r2dΩ2

k , k = 0,±1 , (4.2)

where dΩ2
k denotes a metric of constant Gauss curvature k on a two dimensional

compact manifold M2. These are well known static solutions of the vacuum Ein-
stein equation with a cosmological constant Λ; some subclasses of (4.2) have been
discovered by de Sitter [74] ((4.2) with m = 0 and k = 1), by Kottler [62] (Equa-
tion (4.2) with an arbitrary m and k = 1). The parameter m ∈ R can be seen to be
proportional to the total Hawking mass (cf. (4.5) below) of the foliation t = const,
r = const. We will refer to those solutions as the generalized Kottler solutions.
The constant Λ in (4.2) is an arbitrary real number, but in this section we will only
consider Λ < 0.

From now on the overall approach resembles closely that for asymptotically flat
space-times, as described earlier in this work. For instance, one considers manifolds
which contain asymptotic ends diffeomorphic to R

+ ×M2. It is convenient to think
of each of the sets “{r = ∞} × M 2” as a connected component at infinity of a
boundary at infinity, call it ∂∞M3, of the initial data surface M3. There is a well
defined notion of mass for metrics which asymptote to the above model metrics in
the asymptotic ends, somewhat similar to that in (1.5). In the hyperbolic case the
boundary conditions are considerably more delicate to formulate as compared to
the asymptotically flat one, and we refer the reader to [30–32,79] for details. In the
case when M3 arises from a space-times with negative cosmological constant Λ, the
resulting mass is usually called the Abbott-Deser mass [1]; when Λ = 0 and M 3

is a hyperboloidal hypersurface the associated mass is called the Trautman-Bondi
mass. (The latter notion of mass has often been referred to as “Bondi mass” in
the literature, but the name “Trautman-Bondi mass” seems more appropriate, in
view of the work in [77], which precedes [12] by four years; see also [76].) A large
class of initial data sets with the desired asymptotic behavior has been constructed
in [2, 3, 61], and the existence of the associated space-times has been established
in [40, 41].

The monotonicity argument of Geroch [43], described in Section 1.7, has been
extended by Gibbons [45] to accommodate for the negative cosmological constant;
we follow the presentation in [33]: We assume that we are given a three dimensional
manifold (M3, g) with connected minimal boundary ∂M 3 such that

R ≥ 2Θ ,
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for some strictly negative constant Θ (compare (4.1)). We further assume that there
exists a smooth, global solution of the inverse mean curvature flow without critical
points, with u ranging from zero to infinity, vanishing on ∂M 3, with the level sets
of u

Σ(s) = {u(x) = s}
being compact. Let As denote the area of Σ(s), and define

σ(s) =
√

As

∫

Σ(s)

(2Rs −
1

2
H2

s − 2

3
Θ)d2µs , (4.3)

where 2Rs is the scalar curvature (equal twice the Gauss curvature) of the metric
induced on Σ(s), d2µs is the Riemannian volume element associated to that same
metric, and Hs is the mean curvature of Σ(s). The hypothesis that du is nowhere
vanishing implies that all the objects involved are smooth in s. At s = 0 we have
H0 = 0 and A0 = A∂M3 so that

σ(0) =
√

A∂M3

∫

∂M3

(2R0 −
2

3
Θ)d2µ0

=
√

A∂M3

(

8π(1 − g∂M3) − 2

3
ΘA∂M3

)

. (4.4)

Generalising a formula of Hawking [47], Gibbons [45, Equation (17)] assigns to
the Σ(s) foliation a total mass MHaw via the formula

MHaw ≡ limε→0

√

A1/ε

32π3/2

∫

{u=1/ε}

(2Rs −
1

2
H2

s − 2

3
Θ)d2µs , (4.5)

where Aα is the area of the connected component under consideration of the level
set {u = α}. It follows that

lim
s→∞

σ(s) = 32π3/2MHaw ,

assuming the limit exists. The generalisation in [45] of (1.13) establishes the in-
equality

∂σ

∂s
≥ 0 . (4.6)

This implies lims→∞ σ(s) ≥ σ(0), which gives

2MHaw ≥ (1 − g∂M3)

(

A∂M3

4π

)1/2

− Θ

3

(

A∂M3

4π

)3/2

. (4.7)

Here A∂M3 is the area of ∂M3 and g∂M3 is the genus thereof. Equation (4.7) is
sharp — the inequality there becomes an equality for the generalized Kottler metrics
(4.2).

The hypothesis above that du has no critical points together with our hypothesis
on the geometry of the asymptotic ends forces ∂M 3 to be connected. It is not
entirely clear what is the right generalisation of this inequality to the case where
several black holes occur, with one possibility being

2MHaw ≥
k
∑

i=1

(

(1 − g∂iM3)

(

A∂iM3

4π

)1/2

− Θ

3

(

A∂iM3

4π

)3/2
)

. (4.8)

Here the ∂iM
3’s, i = 1, . . . , k, are the connected components of ∂M 3, A∂iM3 is the

area of ∂iM
3, and g∂iM3 is the genus thereof. This would be the inequality one
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would obtain from the Geroch–Gibbons argument if it could be carried through for
u’s which are allowed to have critical points, on manifolds with ∂∞M3 connected
but ∂M3 — not connected.

As in the asymptotically flat case, the naive monotonicity calculation of [43]
breaks down at critical level sets of u, as those do not have to be smooth submani-
folds. Nevertheless the existence of the appropriate function u (perhaps with critical
points) should probably follow from the results in [55,56]. The open questions here
are 1) a proof of monotonicity at jumps of the flow, where topology change might
occur, and 2) the proof that the Hawking mass (4.5) exists, and equals the mass of
the end under consideration. We also note that in the hyperbolic context it is nat-
ural to consider not only boundaries ∂M 3 which are minimal, but also boundaries
satisfying

H = ±2 .

This is related to the discussion at the beginning of this section: if λ = 0, then
an apparent horizon corresponds to H = 0; if Λ = 0 and λ = −1, then a future
apparent horizon corresponds to H = 2, while a past apparent horizon corresponds
to H = −2.

Let us discuss some of the consequences of the (hypothetical) inequality (4.8). In
the current setting there are some genus-related ambiguities in the definition of mass
(see [33] for a detailed discussion of various notions of mass for static asymptotically
hyperbolic metrics), and it is convenient to introduce a mass parameter m defined
as follows

m =















MHaw , ∂∞M3 = S2 ,
MHaw , ∂∞M3 = T 2, with the normalization A′

∞ = −12π/Θ ,
MHaw

|g∂∞M3 − 1|3/2
, g∂∞M3 > 1 .

(4.9)
Here A′

∞ is the area of ∂∞M3 in the metric dΩ2
k appearing in (4.2). For generalized

Kottler metrics the mass m so defined coincides with the mass parameter appearing
in (4.2) when u is the “radial” solution u = u(r) of the inverse mean curvature flow.

Note, first, that if all connected components of the horizon have spherical or
toroidal topology, then the lower bound (4.8) is strictly positive. For example, if
∂M3 = T 2, and ∂∞M3 = T 2 as well we obtain

2m ≥ −Λ

3

(

A∂M3

4π

)3/2

.

On the other hand if ∂M3 = T 2 but g∂∞M3 > 1 from Equation (4.8) one obtains

2m ≥ − Λ

3|g∞ − 1|

(

A∂M3

4π

)3/2

.

Recall that in a large class of space-times4 the Galloway–Schleich–Witt–Woolgar
inequality [42] holds:

k
∑

i=1

g∂iM3 ≤ g∞ . (4.10)

4The discussion that follows applies to all (M3, g, h)’s that can be isometrically embedded into
a globally hyperbolic space-time M (with timelike conformal boundary at infinity) in which the
null convergence condition holds; further the closure of the image of M3 should be a partial Cauchy
surface in M . Finally the intersection of the closure of M3 with I should be compact. The global
hyperbolicity here, and the notion of Cauchy surfaces, is understood in the sense of manifolds with
boundary, see [42] for details.
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It implies that if ∂∞M3 has spherical topology, then all connected components of
the horizon must be spheres. Similarly, if ∂∞M3 is a torus, then all components of
the horizon are spheres, except perhaps for at most one which could be a torus. It
follows that to have a component of the horizon which has genus higher than one
we need g∞ > 1 as well.

When some — or all — connected components of the horizon have genus higher
than one, the right hand side of Equation (4.8) might become negative. Minimising
the generalised Penrose inequality (4.8) with respect to the areas of the horizons
gives the following interesting inequality

MHaw ≥ − 1

3
√
−Λ

∑

i

|g∂iM3 − 1|3/2 , (4.11)

where the sum is over those connected components ∂iM
3 of ∂M3 for which

g∂iM3 ≥ 1. Equation (4.11), together with the elementary inequality
∑N

i=1 |λi|3/2 ≤
(

∑N
i=1 |λi|

)3/2

, lead to

m ≥ − 1

3
√
−Λ

. (4.12)

Similarly to the asymptotically flat case, the Geroch–Gibbons argument estab-
lishing the inequality (4.4) when a suitable u exists can also be carried through
when ∂M3 = ∅. In this case one still considers solutions u of the differential equa-
tion (2.1) associated with the inverse mean curvature flow, however the Dirichlet
condition on u at ∂M3 is replaced by a condition on the behavior of u near some
chosen point p0 ∈ M3. If the level set of u around p0 approach distance spheres
centred at p0 at a suitable rate, then σ(s) tends to zero when the Σ(s)’s shrink to p0,
which together with the monotonicity of σ leads to the positive energy inequality:

MHaw ≥ 0 . (4.13)

It should be emphasised that the Horowitz-Myers solutions [54] with negative mass
show that this argument breaks down when g∞ = 1.

When ∂∞M3 = S2 the inequality (4.13), with MHaw replaced by the Hamilto-
nian mass (which might perhaps coincide with MHaw , but this remains to be estab-
lished), can be proved by Witten type techniques [30,31] (compare [4,46,79,81]). On
the other hand it follows from [10] that when ∂∞M3 6= S2 there exist no asymptot-
ically covariantly constant spinors which can be used in the Witten argument. The
Geroch–Gibbons argument has a lot of “ifs” attached in this context, in particular if
∂∞M3 6= S2 then some level sets of u are necessarily critical and it is not clear what
happens with σ at jumps of topology. We note that the area of the horizons does
not occur in (4.12) which, when g∂∞M3 > 1, suggests that the correct inequality is
actually (4.12) rather than (4.13), whether or not black holes are present.

We close this section by mentioning an application of the hyperbolic Penrose
inequality to the uniqueness of static regular black holes with a negative cosmolog-
ical constant, pointed out in [33]. It is proved in that last reference that for such
connected black holes an inequality inverse to (4.7) holds, with equality if and only
if the metric is the one in (4.2). Hence a proof of the Penrose inequality would imply
equality in (4.7), and subsequently a uniqueness theorem for such black holes.

4.2 Precise Formulations of the (full) Penrose Conjecture

In the next two subsections we discuss formulations of the Penrose Conjecture and
possible applications of these statements to defining quasi-local mass functionals
with good properties and to defining total mass in surprisingly large generality.
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This discussion is based on the third lecture [13] given by one of us (HB) in Cargèse
in the summer of 2002. Besides discussing various formulations of the conjecture
in this subsection, we point out the value of its possible applications in the next
subsection, which greatly motivates trying to prove the conjecture.

We begin with the question, “Given Cauchy data, where is the event horizon,
and what lower bounds on its area can we make?” Inequality (1.4) is the most
general version of the Penrose conjecture, but there are more “local” versions of it
which have the advantage of possibly being easier to prove. Recall, for instance,
that the exact location of event horizons can not be determined from the Cauchy
data (M3, g, h) without solving the Einstein equations infinitely forward in time.
On the other hand, apparent horizons Σ can be computed directly from the Cauchy
data and are characterised by the equation

HΣ = trΣ(h), (4.14)

that is, the mean curvature H of Σ equals the trace of h along Σ. Note that in the
h = 0 case, this is the assumption that H = 0, which is the Euler-Lagrange equation
of a surface which locally minimises area. This leads to the first formulation of the
Penrose Conjecture, which seems to be due to Gary Horowitz [53]:

Conjecture 4.1 Let (M3, g, h) be complete, asymptotically flat Cauchy data with
µ ≥ |J | and an apparent horizon satisfying equation (4.14). Then

m ≥
√

A/16π, (4.15)

where m is the total mass and A is the minimum area required for a surface to
enclose Σ.

The logic is that since apparent horizons imply the existence of an event horizon
outside of it, and all surfaces enclosing Σ have at least area A, then inequality (1.4)
implies the above conjecture.

An alternative possibility would be to replace Ae in (1.4) by the area of the
apparent horizon. We do not know the answer to this, but a counterexample would
not be terribly surprising (although it would be very interesting). The point is that
the physical reasoning used by Penrose does not directly imply that such a conjec-
ture should be true for apparent horizons. Hence, a counterexample to the area of
the apparent horizon conjecture would be less interesting than a counterexample
to Conjecture 4.1 or 4.2 since one of the latter counterexamples would imply that
there was actually something wrong with Penrose’s physical argument, which would
be very important to understand.

There are also good reasons to consider a second formulation of the Penrose
Conjecture, due to one of the authors (HB), for (M 3, g, h) which have more than
one end. We will choose one end to be special, and then note that large spheres S
in the other asymptotically flat ends are actually “trapped,” meaning that HS <
trS(h) (note that the mean curvatures of these spheres is actually negative when
the outward direction is taken to be toward the special end and away from the
other ends). We can conclude that these large spheres are trapped, if, for example,
the mean curvatures of these large spheres is −2/r to highest order and |h| is
decreasing like 1/r2 (or at least faster than 1/r). Hence, this condition also allows
us to conclude that there must be an event horizon enclosing all of the other ends.
Thus, we conjecture

Conjecture 4.2 Let (M3, g, h) be complete, asymptotically flat Cauchy data with
µ ≥ |J | and more than one end. Choose one end to be special, and then define A
to be the minimum area required to enclose all of the other ends. Then

m ≥
√

A/16π, (4.16)
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where m is the total mass of the chosen end.

We note that, more precisely, A in the above conjecture is the infimum of the
boundary area of all smooth, open regions which contain all of the other ends (but
not the special end). Equivalently (taking the complement), A is the infimum of
the boundary area of all smooth, open regions which contain the special end (but
none of the other ends). A smooth, compact, area-minimising surface (possibly
with multiple connected components) always exists and has zero mean curvature.

The advantage of this second formulation is that it removes equation (4.14)
and the need to define apparent horizons. Also, preliminary thoughts by one of the
authors (HB) lead him to believe that the above two formulations are equivalent via
a reflection argument (although this still requires more consideration). In addition,
this second formulation turns out to be most useful in the quasi-local mass and
total mass definitions in the next subsection.

4.3 Applications to Quasi-local Mass and Total Mass

The ideas of this subsection are due to HB, and were greatly influenced by and in
some cases are simply natural extensions of ideas due to Bartnik in [7,8]. All of the
surfaces we are considering in this subsection are required to be boundaries of regions
which contain all of the other ends besides the chosen one. Given such a surface Σ in
a (M3, g, h) containing at least one asymptotically flat end, let I be the inside region
(containing all of the other ends) and O be the outside region (containing a chosen
end). Then we may consider “extensions” of (M 3, g, h) to be manifolds which result
from replacing the outside region O in M with any other manifold and Cauchy data
such that the resulting Cauchy data (M̃3, g, h) is smooth, asymptotically flat, and
has µ ≥ |J | everywhere (including along the surgery naturally). We define a “fill-
in” of (M3, g, h) to be manifolds which result from replacing the inside region I in
M with any other manifold and Cauchy data such that the resulting Cauchy data
(M̃3, g, h) is smooth, asymptotically flat, and has µ ≥ |J | everywhere. Also, we say
that a surface is “outer-minimising” if any other surface which encloses it has at
least as much area. Note that for “enclose” to make sense, we need to restrict our
attention to surfaces which are the boundaries of regions as stated at the beginning
of this paragraph. The notion of “outer-minimising” surfaces turns out to be central
to the following definitions.

Suppose Σ is outer-minimising in (M3, g, h). Define the Bartnik outer mass
mouter(Σ) to be the infimum of the total mass over all extensions of (M 3, g, h) in
which Σ remains outer-minimising. Hence, what we are doing is fixing (M 3, g, h)
inside Σ and then seeing how small we can make the total mass outside of Σ without
violating µ ≥ |J |. Intuitively, whatever the total mass of this minimal mass exten-
sion outside Σ is can be interpreted as an upper bound for the mass contributed by
the energy and momentum inside Σ.

The definition begs the question, why do we only consider extensions which
keep Σ outer-minimising? After all, we are attempting to find an extension with
minimal mass, and one might naively think that the minimal mass extensions would
naturally have this property anyway, and locally the minimal mass extensions we
defined above probably usually do (if they exist). However, given any Σ, it is always
possible to choose an extension which shrinks to a small neck outside Σ and then
flattens out to an arbitrarily small mass Schwarzschild metric outside the small
neck. Hence, without some restriction to rule out extensions with small necks, the
infimum would always be zero. Bartnik’s original solution to this problem was to
not allow apparent horizons outside of Σ, and this works quite nicely. For technical
reasons, however, we have chosen to preserve the “outer-minimising” condition on
Σ, which allows us to prove that mouter(Σ) ≥ minner(Σ), defined in a moment.
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(Thus, the definition given here is not identical to that in [7], and we do not know
whether or not it gives the same number as Bartnik’s original definition, although
this is a reasonable conjecture under many circumstances. We also note that the
work of Huisken and Ilmanen [57] described above shows that, in the h = 0 case,
the Hawking mass of Σ is a lower bound for the total mass if Σ is outer-minimising.
They also show that mouter(Σ) = m in the case that Σ is entirely outside the black
hole of a time-symmetric slice of the Schwarzschild metric of total mass m. These
results support considering the outer-minimising condition in the current context.)

Suppose again that Σ is outer-minimising in (M 3, g, h). Define the inner mass
minner(Σ) to be the supremum of

√

A/16π over all fill-ins of (M 3, g, h), where A
is the minimum area needed to enclose all of the other ends of the fill-in besides
the chosen end. Hence, what we are doing is fixing (M 3, g, h) outside Σ (so that Σ
automatically remains outer-minimising) and then seeing how large we can make
the area of the global area-minimising surface (which encloses all of the other ends
other than the chosen one). Intuitively, we are trying to fill-in Σ with the largest
possible black hole, since the event horizon of the black hole will have to be at least
A. If we think of

√

A/16π as the mass of the black hole, then the inner mass gives a
reasonable lower bound for the mass of Σ (since there is a fill-in in which it contains
a black hole of that mass).

Theorem 4.3 Suppose (M3, g, h) is complete, asymptotically flat, and has µ ≥ |J |.
Then Conjecture 4.2 implies that

mouter(Σ) ≥ minner(Σ) (4.17)

for all Σ which are outer-minimising.

Sketch of proof: Consider any extension on the outside of Σ (which keeps Σ outer-
minimising) and any fill-in on the inside of Σ simultaneously and call the resulting
manifold M̄ . Since Σ is outer-minimising, there exists a globally area-minimising
surface of M̄ which is enclosed by Σ (since going outside of Σ never decreases area).
Thus, by Conjecture 4.2,

m ≥
√

A/16π, (4.18)

for M̄ . Taking the infimum on the left side and the supremum on the right side
of this inequality then proves the theorem since the total mass m is determined
entirely by the extension and the global minimum area A is determined entirely by
the fill-in. �

Theorem 4.4 Suppose (M3, g, h) is complete, asymptotically flat, and has µ ≥ |J |.
If Σ2 encloses Σ1 and both surfaces are outer-minimising, then

minner(Σ2) ≥ minner(Σ1) (4.19)

and
mouter(Σ2) ≥ mouter(Σ1) (4.20)

Sketch of proof: The first inequality is straightforward since every fill-in inside Σ1

is also a fill-in inside Σ2. The second inequality is almost as straightforward. It
is true that any extension of Σ2 (in which Σ2 is still outer-minimising) is also an
extension of Σ1, but it remains to be shown that such an extension preserves the
outer-minimising property of Σ1. However, this fact follows from the fact that any
surface enclosing Σ1 which goes outside of Σ2 can be made to have less or equal area
by being entirely inside Σ2 (by the outer-minimising property of Σ2). But since Σ1

was outer-minimising in the original manifold, any surface between Σ1 and Σ2 must
have at least as much area as Σ1. �
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The last three theorems inspire the definition of the quasi-local mass of a surface
Σ in (M3, g, h) to be the interval

m(Σ) ≡ [minner(Σ), mouter(Σ)] ⊂ R. (4.21)

That is, we are not defining the quasi-local mass of a surface to be a number, but
instead to be an interval in the real number line. Both endpoints of this interval are
increasing when we move outward to surfaces which enclose the original surface. If
Σ ⊂ (M3, g, h) and (M3, g, h) is Schwarzschild data, then this interval collapses to
a point and equals the mass of the Schwarzschild data (assuming Conjecture 4.2).
Conversely, if the quasilocal mass interval of Σ is a point, then we expect that Σ
can be imbedded into a Schwarzschild spacetime in such a way that its Bartnik
data (the metric, mean curvature vector in the normal bundle, and the connection
on the normal bundle of Σ) is preserved, which is a nongeneric condition. Hence,
we typically expect the quasi-local mass of a surface to be an interval of positive
length. We also expect the quasi-local mass interval to be very close to a point in
a “quasi-Newtonian” situation, where Σ is in the part of the space-time which is a
perturbation of Minkowski space, for example. We point out that so far there are
not any surfaces for which we can prove that the quasi-local mass is not a point.
This is because there are very few instances in which the inner and outer masses
of a surface can be computed at all. These questions will have to wait until a
better understanding of the Penrose conjecture is found. This definition of quasi-
local mass leads naturally to definitions of total inner mass, mtotal

inner, and total outer
mass, mtotal

outer, where in both cases we simply take the supremum of inner mass and
outer mass respectively over all Σ which are outer-minimising.

Conjecture 4.5 If (M3, g, h) is asymptotically flat with total mass mADM , then

mtotal
inner = mtotal

outer = mADM . (4.22)

Consider (M3, g, h) which is not assumed to have any asymptotics but still
satisfies µ ≥ |J |. Then we will say that Σ (again, always assumed to be the boundary
of a region in M3) is “legal” if Σ is outer-minimising in (M 3, g, h) and there exists
an asymptotically flat extension with µ ≥ |J | outside of Σ in which Σ remains
outer-minimising. Note that (M3, g, h) is not assumed to have any asymptotics.
We are simply defining the surfaces for which extensions with good asymptotics
exist, and giving these surfaces the name “legal.” Note also that both minner(Σ)
and mouter(Σ) are well-defined for legal Σ. Thus, total inner mass and total outer
mass are well-defined as long as (M 3, g, h) has at least one legal Σ. Finally, theorems
4.3 and 4.4 are still true for legal surfaces even when (M 3, g, h) is not assumed to
be asymptotically flat.

During the “50 Years” conference in Cargèse, Mark Aarons asked the question,
“When are the total inner mass and the total outer mass different?” This is a very
hard question, but it is such a good one that it deserves some speculation. If we
define

mtotal ≡ [mtotal
inner , m

total
outer], (4.23)

then total mass is very often well-defined (as long as there is at least one legal Σ),
but is not necessarily a single value. Mark’s question is then equivalent to, “When
is the total mass single-valued and therefore well-defined as a real number?”

According to conjecture 4.5, we are not going to find an example of total inner
mass mtotal

inner 6= mtotal
outer, the total outer mass, in the class of asymptotically flat

manifolds. In fact, we are not aware of any examples of mtotal
inner 6= mtotal

outer, though
one can give arguments to the effect that such situations could occur. On the other
hand we believe that in reasonable situations this will not happen:
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Conjecture 4.6 Suppose (M 3, g, h) has µ ≥ |J | and that there exists a nested
sequence of connected, legal surfaces Σi = ∂Di ⊂ M , 1 ≤ i < ∞, with

⋃

i Di = M
and lim |Σi| = ∞. Then

mtotal
inner = mtotal

outer ∈ R ∪ {∞}. (4.24)

At first this conjecture seems wildly optimistic considering it is suggesting that
total mass is well-defined in the extended real numbers practically all of the time,
where the only assumptions we are making are along the lines of saying that the
noncompact end must be “large” in some sense. Note, for example, we are ruling out
cylindrical ends and certain types of cusp ends. However, the idea here is that most
kinds of “crazy asymptotics” cause both mtotal

inner and mtotal
outer to diverge to infinity.

Hence, the reason this conjecture (or one similar to it) has a decent chance of being
true is the possibility that either mtotal

inner or mtotal
outer being finite is actually a very

restrictive situation. For example, if either the total inner mass or the total outer
mass is finite, then it might be true that this implies that (M 3, g, h) is asymptotic
to data coming from a space-like slice of a Schwarzschild space-time (in some sense).
In this case, one would expect that both the total inner and outer masses actually
equal the mass of the Schwarzschild space-time and therefore are equal to each other.
Certainly in the case that (M 3, g, h) is precisely a slice (even a very weird slice) of
a Schwarzschild space-time, it is only natural to point out that total mass should
be well-defined. These definitions seem to be an approach to defining total mass in
these more general settings. However, a complete understanding of these definitions
clearly depends on making further progress studying the Penrose Conjecture.
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Conformal Structure of Space-times, H. Friedrich and J. Frauendiener, Eds.,
Springer Lecture Notes in Physics 604, 61–102 (2002), gr-qc/0201053.

[25] , A remark on the positive energy theorem, Class. Quantum Grav. 33

(1986), L115–L121.

[26] , Boundary conditions at spatial infinity from a Hamiltonian point
of view, Topological Properties and Global Structure of Space–Time (P.
Bergmann and V. de Sabbata, eds.), Plenum Press, New York, 1986, pp. 49–59,
URL http://www.phys.univ-tours.fr/∼piotr/scans.

[27] , On the invariant mass conjecture in general relativity, Commun. Math.
Phys. 120 (1988), 233–248.

25



[28] P.T. Chruściel and E. Delay, On mapping properties of the general relativistic
constraints operator in weighted function spaces, with applications, Mém. Soc.
Math. de France. 94 (2003), 1–103, gr-qc/0301073v2.
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[32] P.T. Chruściel and G. Nagy, The mass of spacelike hypersurfaces in asymptot-
ically anti-de Sitter space-times, Adv. Theor. Math. Phys. 5 (2002), 697–754,
gr-qc/0110014.
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